On dual transform of fractional Hankel transform

نویسندگان

چکیده

We deal with a class of one-parameter family integral transforms Bargmann type arising as dual transform fractional Hankel transform. Their ranges are identified to be special subspaces of...

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a generalized finite Hankel transform

In the present work we introduce a finite integral transform involving combination of Bessel functions as kernel under prescribed conditions. The corresponding inversion formula and some properties of this transform have also been given. Three problems of heat conduction in an infinite, a semi-infinite and a finite circular cylinder bounded by given surfaces with radiation-type boundary value c...

متن کامل

About Calculation of the Hankel Transform Using Preliminary Wavelet Transform

The purpose of this paper is to present an algorithm for evaluating Han-kel transform of the null and the first kind. The result is the exact analytical representation as the series of the Bessel and Struve functions multiplied by the wavelet coefficients of the input function. Numerical evaluation of the test function with known analytical Hankel transform illustrates the proposed algorithm. T...

متن کامل

Transformations Preserving the Hankel Transform

Transformations Preserving the Hankel Transform Christopher French Department of Mathematics and Statistics Grinnell College Grinnell, IA 50112 USA [email protected] Abstract We classify all polynomial transformations of integer sequences which preserve the Hankel transform, thus generalizing examples due to Layman and Spivey & Steil. We also show that such transformations form a group ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex Variables and Elliptic Equations

سال: 2021

ISSN: ['1747-6941', '1747-6933']

DOI: https://doi.org/10.1080/17476933.2021.1903452